Submit your Data

Articles (373 results)
Title Journal Author(s) Aniseed Data PMID/DOI
Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 2012; 492; 7427:104-7 Abitua P, Wagner E, Navarrete I, Levine M
The pre-vertebrate origins of neurogenic placodes. Nature 2015; 524; 7566:462-5 Abitua P, Gainous T, Kaczmarczyk A, Winchell C, Hudson C, Kamata K, Nakagawa M, Tsuda M, Kusakabe T, Levine M
Developmental expression and transcriptional regulation of Ci-Pans, a novel neural marker gene of the ascidian, Ciona intestinalis. Gene 2007; 406; 1-2:36-41 Alfano C, Teresa Russo M, Spagnuolo A
Identification and developmental expression of Ci-msxb: a novel homologue of Drosophila msh gene in Ciona intestinalis. Mech. Dev. 1999; 88; 1:123-6 Aniello F, Locascio A, Villani M, Di Gregorio A, Fucci L, Branno M
Transcriptional regulation of ZicL in the Ciona intestinalis embryo. Dev. Genes Evol. 2006; 216; 10:597-605 Anno C, Satou A, Fujiwara S
Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis. Dev. Biol. 2010; 339; 2:374-89 Auger H, Sasakura Y, Joly J, Jeffery W
Similar regulatory logic in Ciona intestinalis for two Wnt pathway modulators, ROR and SFRP-1/5. Dev. Biol. 2009; 329; 2:364-73 Auger H, Lamy C, Haeussler M, Khoueiry P, Lemaire P, Joly J
An enhancer trap in the ascidian Ciona intestinalis identifies enhancers of its Musashi orthologous gene. Dev. Biol. 2004; 275; 2:459-72 Awazu S, Sasaki A, Matsuoka T, Satoh N, Sasakura Y
High-throughput enhancer trap by remobilization of transposon Minos in Ciona intestinalis. Genesis 2007; 45; 5:307-17 Awazu S, Matsuoka T, Inaba K, Satoh N, Sasakura Y
FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 2007; 134; 18:3297-305 Beh J, Shi W, Levine M, Davidson B, Christiaen L
The development and growth of Ciona. J. Mar. Biolog. Assoc. U.K. 1947; 26; 4:616-25 BERRILL N
Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 2003; 115; 5:615-27 Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P
De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Sci Rep 2018; 8; 1:5518 Blanchoud S, Rutherford K, Zondag L, Gemmell N, Wilson M
Intraspecies sequence comparisons for annotating genomes. Genome Res. 2004; 14; 12:2406-11 Boffelli D, Weer C, Weng L, Lewis K, Shoukry M, Pachter L, Keys D, Rubin E
Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 2007; 317; 5844:1557-60 Brown C, Johnson D, Sidow A
ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. 2018; 46; D1:D718-D725 Brozovic M, Dantec C, Dardaillon J, Dauga D, Faure E, Gineste M, Louis A, Naville M, Nitta K, Piette J, Reeves W, Scornavacca C, Simion P, Vincentelli R, Bellec M, Aicha S, Fagotto M, Guéroult-Bellone M, Haeussler M, Jacox E, Lowe E, Mendez M, Roberge A, Stolfi A, Yokomori R, Brown C, Cambillau C, Christiaen L, Delsuc F, Douzery E, Dumollard R, Kusakabe T, Nakai K, Nishida H, Satou Y, Swalla B, Veeman M, Volff J, Lemaire P
Fine structure of the intestinal epithelium of the colonial ascidian Botryllus schlosseri. Cell Tissue Res. 1977; 182; 3:357-69 Burighel P, Milanesi C
Ci-POU-IV expression identifies PNS neurons in embryos and larvae of the ascidian Ciona intestinalis. Dev. Genes Evol. 2005; 215; 1:41-5 Candiani S, Pennati R, Oliveri D, Locascio A, Branno M, Castagnola P, Pestarino M, De Bernardi F
Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis. Mech. Dev. 2000; 99; 1-2:173-6 Caracciolo A, Di Gregorio A, Aniello F, Di Lauro R, Branno M
Specific cellular localization of tyrosinase mRNA during Ciona intestinalis larval development. Dev. Growth Differ. 1997; 39; 4:437-44 Caracciolo A, Gesualdo I, Branno M, Aniello F, Di Lauro R, Palumbo A
A new transglutaminase-like from the ascidian Ciona intestinalis. FEBS Lett. 1997; 408; 2:171-6 Cariello L, Ristoratore F, Zanetti L
Stochasticity and stereotypy in the Ciona notochord. Dev. Biol. 2015; 397; 2:248-56 Carlson M, Reeves W, Veeman M
Ciona intestinalis nuclear receptor 1: a member of steroid/thyroid hormone receptor family. Proc. Natl. Acad. Sci. U.S.A. 1998; 95; 19:11152-7 Carosa E, Fanelli A, Ulisse S, Di Lauro R, Rall J, Jannini E
Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity. Dev. Biol. 2014; 390; 2:261-72 Chen W, Pauls S, Bacha J, Elgar G, Loose M, Shimeld S
Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development 2009; 136; 1:35-9 Chiba S, Jiang D, Satoh N, Smith W
Development of Ciona intestinalis juveniles (through 2nd ascidian stage). Zool. Sci. 2004; 21; 3:285-98 Chiba S, Sasaki A, Nakayama A, Takamura K, Satoh N
BMP signaling coordinates gene expression and cell migration during precardiac mesoderm development. Dev. Biol. 2010; 340; 2:179-87 Christiaen L, Stolfi A, Levine M
Pitx genes in Tunicates provide new molecular insight into the evolutionary origin of pituitary. Gene 2002; 287; 1-2:107-13 Christiaen L, Burighel P, Smith W, Vernier P, Bourrat F, Joly J
A modular cis-regulatory system controls isoform-specific pitx expression in ascidian stomodaeum. Dev. Biol. 2005; 277; 2:557-66 Christiaen L, Bourrat F, Joly J
Evolutionary modification of mouth position in deuterostomes. Semin. Cell Dev. Biol. 2007; 18; 4:502-11 Christiaen L, Jaszczyszyn Y, Kerfant M, Kano S, Thermes V, Joly J
The transcription/migration interface in heart precursors of Ciona intestinalis. Science 2008; 320; 5881:1349-52 Christiaen L, Davidson B, Kawashima T, Powell W, Nolla H, Vranizan K, Levine M
Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp. Dev. Biol. 2009; 328; 2:552-60 Christiaen L, Stolfi A, Davidson B, Levine M
Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev. Biol. 2007; 306; 2:772-84 Comes S, Locascio A, Silvestre F, d'Ischia M, Russo G, Tosti E, Branno M, Palumbo A
Suppressor of hairless activates brachyury expression in the Ciona embryo. Dev. Biol. 1998; 203; 2:358-68 Corbo J, Fujiwara S, Levine M, Di Gregorio A
Dorsoventral patterning of the vertebrate neural tube is conserved in a protochordate. Development 1997; 124; 12:2335-44 Corbo J, Erives A, Di Gregorio A, Chang A, Levine M
Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 1997; 124; 3:589-602 Corbo J, Levine M, Zeller R
Simple chordates exhibit a proton-independent function of acid-sensing ion channels. FASEB J. 2008; 22; 6:1914-23 Coric T, Passamaneck Y, Zhang P, Di Gregorio A, Canessa C
Ci-IPF1, the pancreatic homeodomain transcription factor, is expressed in neural cells of Ciona intestinalis larva. Mech. Dev. 2001; 102; 1-2:271-4 Corrado M, Aniello F, Fucci L, Branno M
Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage. Dev. Cell 2015; 34; 5:505-19 Cota C, Davidson B
Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos. Elife 2020; 9; : Coulcher J, Roure A, Chowdhury R, Robert M, Lescat L, Bouin A, Carvajal Cadavid J, Nishida H, Darras S
Serial repetition of cilia pairs along the tail surface of an ascidian larva. J. Exp. Zool. 1994; 268; 1:9-16 Crowther R, Whittaker J
Ci-GATAa, a GATA-class gene from the ascidian Ciona intestinalis: isolation and developmental expression. Dev. Dyn. 2003; 226; 1:145-8 D'Ambrosio P, Fanelli A, Pischetola M, Spagnuolo A
Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis. Dev. Biol. 2011; 355; 2:358-71 D'Aniello E, Pezzotti M, Locascio A, Branno M
The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function. Differentiation 2006; 74; 5:222-34 D'Aniello S, D'Aniello E, Locascio A, Memoli A, Corrado M, Russo M, Aniello F, Fucci L, Brown E, Branno M
FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev. 2006; 20; 19:2728-38 Davidson B, Shi W, Beh J, Christiaen L, Levine M
Ciona intestinalis as a model for cardiac development. Semin. Cell Dev. Biol. 2007; 18; 1:16-26 Davidson B
Evolutionary origins of the vertebrate heart: Specification of the cardiac lineage in Ciona intestinalis. Proc. Natl. Acad. Sci. U.S.A. 2003; 100; 20:11469-73 Davidson B, Levine M
Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 2005; 132; 21:4811-8 Davidson B, Shi W, Levine M
Expression cloning in ascidians: isolation of a novel member of the asctacin protease family. Dev. Genes Evol. 2002; 212; 2:81-6 Davis S, Smith W
Morphological and gene expression similarities suggest that the ascidian neural gland may be osmoregulatory and homologous to vertebrate peri-ventricular organs. Eur. J. Neurosci. 2006; 24; 8:2299-308 Deyts C, Casane D, Vernier P, Bourrat F, Joly J
Hemocyte migration during inflammatory-like reaction of Ciona intestinalis (Tunicata, ascidiacea). J. Invertebr. Pathol. 2000; 76; 2:105-11 Di Bella M, De Leo G
Regulation of Ci-tropomyosin-like, a Brachyury target gene in the ascidian, Ciona intestinalis. Development 1999; 126; 24:5599-609 Di Gregorio A, Levine M
Developmental regulation and tissue-specific localization of calmodulin mRNA in the protochordate Ciona intestinalis. Dev. Growth Differ. 1998; 40; 4:387-94 Di Gregorio A, Villani M, Locascio A, Ristoratore F, Aniello F, Branno M
The regulation of forkhead/HNF-3beta expression in the Ciona embryo. Dev. Biol. 2001; 229; 1:31-43 Di Gregorio A, Corbo J, Levine M
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520; 7548:466-73 Diogo R, Kelly R, Christiaen L, Levine M, Ziermann J, Molnar J, Noden D, Tzahor E
Parallel evolution of chordate cis-regulatory code for development. PLoS Genet. 2013; 9; 11:e1003904 Doglio L, Goode D, Pelleri M, Pauls S, Frabetti F, Shimeld S, Vavouri T, Elgar G
Localization of CiCBR in the invertebrate chordate Ciona intestinalis: evidence of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. J. Comp. Neurol. 2007; 502; 4:660-72 Egertová M, Elphick M
Characterization of a maternal T-Box gene in Ciona intestinalis. Dev. Biol. 2000; 225; 1:169-78 Erives A, Levine M
Lineage-specific regulation of the Ciona snail gene in the embryonic mesoderm and neuroectoderm. Dev. Biol. 1998; 194; 2:213-25 Erives A, Corbo J, Levine M
Non-homologous structured CRMs from the Ciona genome. J. Comput. Biol. 2009; 16; 2:369-77 Erives A
New insights into the evolution of metazoan tyrosinase gene family. PLoS One 2012; 7; 4:e35731 Esposito R, D'Aniello S, Squarzoni P, Pezzotti M, Ristoratore F, Spagnuolo A
Patterning of brain precursors in ascidian embryos. Development 2017; 144; 2:258-264 Esposito R, Yasuo H, Sirour C, Palladino A, Spagnuolo A, Hudson C
Novel G-protein-coupled receptor gene expressed specifically in the entire neural tube of the ascidian Ciona intestinalis. Dev. Genes Evol. 2002; 212; 9:447-51 Etani K, Nishikata T
Interplay of negative and positive signals controls endoderm-specific expression of the ascidian Cititf1 gene promoter. Dev. Biol. 2003; 263; 1:12-23 Fanelli A, Lania G, Spagnuolo A, Di Lauro R
Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc. Natl. Acad. Sci. U.S.A. 2016; 113; 23:6508-13 Farley E, Olson K, Zhang W, Rokhsar D, Levine M
A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. Development 2020; 147; 15: Fiuza U, Negishi T, Rouan A, Yasuo H, Lemaire P
Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev. Genes Evol. 2000; 210; 2:64-72 Fujimura M, Takamura K
The snail repressor establishes a muscle/notochord boundary in the Ciona embryo. Development 1998; 125; 13:2511-20 Fujiwara S, Corbo J, Levine M
Gene expression profiles in Ciona intestinalis cleavage-stage embryos. Mech. Dev. 2002; 112; 1-2:115-27 Fujiwara S, Maeda Y, Shin-I T, Kohara Y, Takatori N, Satou Y, Satoh N
Promoter activity of the retinoic acid receptor gene in the Ciona intestinalis embryo. Dev. Dyn. 2005; 232; 4:1124-30 Fujiwara S
Diverse ETS transcription factors mediate FGF signaling in the Ciona anterior neural plate. Dev. Biol. 2015; 399; 2:218-25 Gainous T, Wagner E, Levine M
TCF/Lef regulates the Gsx ParaHox gene in central nervous system development in chordates. BMC Evol. Biol. 2016; 16; :57 Garstang M, Osborne P, Ferrier D
Cytodifferentiation of hair cells during the development of a basal chordate. Hear. Res. 2013; 304; :188-99 Gasparini F, Caicci F, Rigon F, Zaniolo G, Burighel P, Manni L
Cihox5, a new Ciona intestinalis Hox-related gene, is involved in regionalization of the spinal cord. Dev. Genes Evol. 1998; 207; 8:515-23 Gionti M, Ristoratore F, Di Gregorio A, Aniello F, Branno M, Di Lauro R
Identification and developmental expression of Ci-isl, a homologue of vertebrate islet genes, in the ascidian Ciona intestinalis. Mech. Dev. 1998; 78; 1-2:199-202 Giuliano P, Marino R, Pinto M, De Santis R
Surrounding tissues canalize motile cardiopharyngeal progenitors towards collective polarity and directed migration. Development 2015; 142; 3:544-54 Gline S, Kaplan N, Bernadskaya Y, Abdu Y, Christiaen L
A transiently expressed connexin is essential for anterior neural plate development in Ciona intestinalis. Development 2013; 140; 1:147-55 Hackley C, Mulholland E, Kim G, Newman-Smith E, Smith W
A cis-regulatory signature for chordate anterior neuroectodermal genes. PLoS Genet. 2010; 6; 4:e1000912 Haeussler M, Jaszczyszyn Y, Christiaen L, Joly J
Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona. Dev. Biol. 2015; 405; 2:304-15 Hamada M, Goricki S, Byerly M, Satoh N, Jeffery W
Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain. Dev. Biol. 2011; 352; 2:202-14 Hamada M, Shimozono N, Ohta N, Satou Y, Horie T, Kawada T, Satake H, Sasakura Y, Satoh N
Ci-Rga, a gene encoding an MtN3/saliva family transmembrane protein, is essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis. Differentiation 2005; 73; 7:364-76 Hamada M, Wada S, Kobayashi K, Satoh N
Novel genes involved in Ciona intestinalis embryogenesis: characterization of gene knockdown embryos. Dev. Dyn. 2007; 236; 7:1820-31 Hamada M, Wada S, Kobayashi K, Satoh N
Microarray analysis of zygotic expression of transcription factor genes and cell signaling molecule genes in early Ciona intestinalis embryos. Dev. Growth Differ. 2007; 49; 1:27-37 Hamaguchi M, Fujie M, Noda T, Satoh N
Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proc. Natl. Acad. Sci. U.S.A. 2002; 99; 10:6802-5 Harafuji N, Keys D, Levine M
Differential Expression of a Classic Cadherin Directs Tissue-Level Contractile Asymmetry during Neural Tube Closure. 2019; 51; 2:158-172.e4 Hashimoto H, Munro E
The transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos. Development 2011; 138; 12:2591-600 Hashimoto H, Enomoto T, Enomoto A, Kumano G, Nishida H
p120RasGAP mediates ephrin/Eph-dependent attenuation of FGF/ERK signals during cell fate specification in ascidian embryos. Development 2013; 140; 21:4347-52 Haupaix N, Stolfi A, Sirour C, Picco V, Levine M, Christiaen L, Yasuo H
AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Proc Natl Acad Sci U S A 2017; 114; 15:3939-3944 Hirai S, Hotta K, Kubo Y, Nishino A, Okabe S, Okamura Y, Okado H
Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissues of the juvenile. Dev. Biol. 1997; 192; 2:199-210 Hirano T, Nishida H
Developmental fates of larval tissues after metamorphosis in the ascidian, Halocynthia roretzi. II. Origin of endodermal tissues of the juvenile. Dev. Genes Evol. 2000; 210; 2:55-63 Hirano T, Nishida H
Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates. Dev. Dyn. 2005; 233; 3:1031-7 Hiruta J, Mazet F, Yasui K, Zhang P, Ogasawara M
Restricted expression of NADPH oxidase/peroxidase gene (Duox) in zone VII of the ascidian endostyle. Cell Tissue Res. 2006; 326; 3:835-41 Hiruta J, Mazet F, Ogasawara M
Glutamatergic networks in the Ciona intestinalis larva. J. Comp. Neurol. 2008; 508; 2:249-63 Horie T, Kusakabe T, Tsuda M
Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva. J. Comp. Neurol. 2008; 509; 1:88-102 Horie T, Sakurai D, Ohtsuki H, Terakita A, Shichida Y, Usukura J, Kusakabe T, Tsuda M
Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 2011; 469; 7331:525-8 Horie T, Shinki R, Ogura Y, Kusakabe T, Satoh N, Sasakura Y
Transcriptional regulation in the early ectodermal lineage of ascidian embryos. Dev. Growth Differ. 2013; 55; 9:776-85 Horikawa Y, Matsumoto H, Yamaguchi F, Ishida S, Fujiwara S
Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. Dev. Biol. 2000; 224; 1:69-80 Hotta K, Takahashi H, Asakura T, Saitoh B, Takatori N, Satou Y, Satoh N
A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev. Dyn. 2007; 236; 7:1790-805 Hotta K, Mitsuhara K, Takahashi H, Inaba K, Oka K, Gojobori T, Ikeo K
Temporal expression patterns of 39 Brachyury-downstream genes associated with notochord formation in the Ciona intestinalis embryo. Dev. Growth Differ. 1999; 41; 6:657-64 Hotta K, Takahashi H, Erives A, Levine M, Satoh N
Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev. Dyn. 2015; 244; 11:1375-93 Hozumi A, Horie T, Sasakura Y
Enhancer activity sensitive to the orientation of the gene it regulates in the chordate genome. Dev. Biol. 2013; 375; 1:79-91 Hozumi A, Yoshida R, Horie T, Sakuma T, Yamamoto T, Sasakura Y
Germline transgenesis of the chordate Ciona intestinalis with hyperactive variants of sleeping beauty transposable element. Dev. Dyn. 2013; 242; 1:30-43 Hozumi A, Mita K, Miskey C, Mates L, Izsvak Z, Ivics Z, Satake H, Sasakura Y
Efficient transposition of a single Minos transposon copy in the genome of the ascidian Ciona intestinalis with a transgenic line expressing transposase in eggs. Dev. Dyn. 2010; 239; 4:1076-88 Hozumi A, Kawai N, Yoshida R, Ogura Y, Ohta N, Satake H, Satoh N, Sasakura Y
Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development 2011; 138; 8:1643-52 Hudson C, Ba M, Rouvière C, Yasuo H
The central nervous system of ascidian larvae. Wiley Interdiscip Rev Dev Biol 2016; 5; 5:538-61 Hudson C
A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development 2006; 133; 15:2855-64 Hudson C, Yasuo H
Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos. Elife 2016; 5; : Hudson C, Sirour C, Yasuo H
β-Catenin-driven binary fate specification segregates germ layers in ascidian embryos. Curr. Biol. 2013; 23; 6:491-5 Hudson C, Kawai N, Negishi T, Yasuo H
Snail mediates medial-lateral patterning of the ascidian neural plate. Dev. Biol. 2015; 403; 2:172-9 Hudson C, Sirour C, Yasuo H
Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech. Dev. 2001; 100; 2:189-203 Hudson C, Lemaire P
Sequential and combinatorial inputs from Nodal, Delta2/Notch and FGF/MEK/ERK signalling pathways establish a grid-like organisation of distinct cell identities in the ascidian neural plate. Development 2007; 134; 19:3527-37 Hudson C, Lotito S, Yasuo H
A Simple Method to Identify Ascidian Brain Lineage Cells at Neural Plate Stages Following In Situ Hybridization. Methods Mol Biol 2020; 2047; :325-345 Hudson C
A conserved role for the MEK signalling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidian Ciona intestinalis. Development 2003; 130; 1:147-59 Hudson C, Darras S, Caillol D, Yasuo H, Lemaire P
Patterning across the ascidian neural plate by lateral Nodal signalling sources. Development 2005; 132; 6:1199-210 Hudson C, Yasuo H
Transposon-mediated targeted and specific knockdown of maternally expressed transcripts in the ascidian Ciona intestinalis. Sci Rep 2014; 4; :5050 Iitsuka T, Mita K, Hozumi A, Hamada M, Satoh N, Sasakura Y
A time delay gene circuit is required for palp formation in the ascidian embryo. Development 2013; 140; 23:4703-8 Ikeda T, Matsuoka T, Satou Y
Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo. Development 2017; 144; 1:38-43 Ikeda T, Satou Y
Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development. Proc. Natl. Acad. Sci. U.S.A. 2004; 101; 42:15118-23 Ikuta T, Yoshida N, Satoh N, Saiga H
Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis. Development 2010; 137; 9:1505-13 Ikuta T, Satoh N, Saiga H
Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain-hindbrain boundary region. Dev. Biol. 2007; 312; 2:631-43 Ikuta T, Saiga H
Finding cell-specific expression patterns in the early Ciona embryo with single-cell RNA-seq. Sci Rep 2020; 10; 1:4961 Ilsley G, Suyama R, Noda T, Satoh N, Luscombe N
Antagonism between β-catenin and Gata.a sequentially segregates the germ layers of ascidian embryos. Development 2016; 143; 22:4167-4172 Imai K, Hudson C, Oda-Ishii I, Yasuo H, Satou Y
Region specific gene expressions in the central nervous system of the ascidian embryo. Gene Expr. Patterns 2002; 2; 3-4:319-21 Imai K, Satoh N, Satou Y
Cis-acting transcriptional repression establishes a sharp boundary in chordate embryos. Science 2012; 337; 6097:964-7 Imai K, Daido Y, Kusakabe T, Satou Y
Regulatory blueprint for a chordate embryo. Science 2006; 312; 5777:1183-7 Imai K, Levine M, Satoh N, Satou Y
An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 2002; 129; 14:3441-53 Imai K, Satoh N, Satou Y
Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system. J. Comp. Neurol. 2007; 501; 3:335-52 Imai J, Meinertzhagen I
Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 2004; 131; 16:4047-58 Imai K, Hino K, Yagi K, Satoh N, Satou Y
Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system. J. Comp. Neurol. 2007; 501; 3:316-34 Imai J, Meinertzhagen I
Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 2009; 136; 2:285-93 Imai K, Stolfi A, Levine M, Satou Y
Expression of the Distalless-B gene in Ciona is regulated by a pan-ectodermal enhancer module. Dev. Biol. 2011; 353; 2:432-9 Irvine S, Vierra D, Millette B, Blanchette M, Holbert R
Non-overlapping expression patterns of the clustered Dll-A/B genes in the ascidian Ciona intestinalis. J. Exp. Zool. B Mol. Dev. Evol. 2007; 308; 4:428-41 Irvine S, Cangiano M, Millette B, Gutter E
Cis-regulatory organization of the Pax6 gene in the ascidian Ciona intestinalis. Dev. Biol. 2008; 317; 2:649-59 Irvine S, Fonseca V, Zompa M, Antony R
Oligonucleotide-based microarray analysis of retinoic acid target genes in the protochordate, Ciona intestinalis. Dev. Dyn. 2005; 233; 4:1571-8 Ishibashi T, Usami T, Fujie M, Azumi K, Satoh N, Fujiwara S
Microarray analysis of embryonic retinoic acid target genes in the ascidian Ciona intestinalis. Dev. Growth Differ. 2003; 45; 3:249-59 Ishibashi T, Nakazawa M, Ono H, Satoh N, Gojobori T, Fujiwara S
Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution. Zool. Sci. 2010; 27; 2:84-90 Islam A, Moly P, Miyamoto Y, Kusakabe T
Functional studies of the Ciona intestinalis myogenic regulatory factor reveal conserved features of chordate myogenesis. Dev Biol 2013; 376; 2:213-23 Izzi S, Colantuono B, Sullivan K, Khare P, Meedel T
Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest. Dev. Biol. 2008; 324; 1:152-60 Jeffery W, Chiba T, Krajka F, Deyts C, Satoh N, Joly J
Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development. Development 2013; 140; 11:2422-33 José-Edwards D, Oda-Ishii I, Nibu Y, Di Gregorio A
Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet. 2015; 11; 12:e1005730 José-Edwards D, Oda-Ishii I, Kugler J, Passamaneck Y, Katikala L, Nibu Y, Di Gregorio A
The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the brachyury gene regulatory network. Dev. Dyn. 2011; 240; 7:1793-805 José-Edwards D, Kerner P, Kugler J, Deng W, Jiang D, Di Gregorio A
Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev. Biol. 2013; 378; 2:183-93 Joyce Tang W, Chen J, Zeller R
Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis. Dev. Dyn. 2014; 243; 12:1524-35 Kamiya C, Ohta N, Ogura Y, Yoshida K, Horie T, Kusakabe T, Satake H, Sasakura Y
Epidermal expression of Hox1 is directly activated by retinoic acid in the Ciona intestinalis embryo. Dev. Biol. 2009; 335; 2:454-63 Kanda M, Wada H, Fujiwara S
Identification of a retinoic acid-responsive neural enhancer in the Ciona intestinalis Hox1 gene. Dev. Growth Differ. 2013; 55; 2:260-9 Kanda M, Ikeda T, Fujiwara S
Mechanism of DNA replication-dependent transcriptional activation of the acetylcholinesterase gene in the Ciona intestinalis embryo. Dev. Growth Differ. 2009; 51; 9:841-50 Kataoka Y, Mishina R, Fujiwara S
Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord. PLoS Biol. 2013; 11; 10:e1001697 Katikala L, Aihara H, Passamaneck Y, Gazdoiu S, José-Edwards D, Kugler J, Oda-Ishii I, Imai J, Nibu Y, Di Gregorio A
Characterization of a novel vasopressin/oxytocin superfamily peptide and its receptor from an ascidian, Ciona intestinalis. Peptides 2008; 29; 10:1672-8 Kawada T, Sekiguchi T, Itoh Y, Ogasawara M, Satake H
Application of the cis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidian Ciona intestinalis. Genesis 2015; 53; 1:170-82 Kawaguchi A, Utsumi N, Morita M, Ohya A, Wada S
Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels. J Biol Chem 2021; 296; :100783 Kawai T, Hashimoto M, Eguchi N, Nishino J, Jinno Y, Mori-Kreiner R, Aspåker M, Chiba D, Ohtsuka Y, Kawanabe A, Nishino A, Okamura Y
Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Dev. Growth Differ. 2012; 54; 5:535-45 Kawai N, Ochiai H, Sakuma T, Yamada L, Sawada H, Yamamoto T, Sasakura Y
Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev. Biol. 2015; 403; 1:43-56 Kawai N, Ogura Y, Ikuta T, Saiga H, Hamada M, Sakuma T, Yamamoto T, Satoh N, Sasakura Y
Regulation of NF-kappaB/Rel by IkappaB is essential for ascidian notochord formation. Dev. Biol. 2005; 277; 1:80-91 Kawai N, Takahashi H, Nishida H, Yokosawa H
Induction of trunk lateral cells, the blood cell precursors, during ascidian embryogenesis. Dev. Biol. 1997; 181; 1:14-20 Kawaminani S, Nishida H
Germline cell formation and gonad regeneration in solitary and colonial ascidians. Dev. Dyn. 2011; 240; 2:299-308 Kawamura K, Tiozzo S, Manni L, Sunanaga T, Burighel P, De Tomaso A
M-Ras evolved independently of R-Ras and its neural function is conserved between mammalian and ascidian, which lacks classical Ras. Gene 2009; 429; 1-2:49-58 Keduka E, Kaiho A, Hamada M, Watanabe-Takano H, Takano K, Ogasawara M, Satou Y, Satoh N, Endo T
Cross-validated methods for promoter/transcription start site mapping in SL trans-spliced genes, established using the Ciona intestinalis troponin I gene. Nucleic Acids Res 2011; 39; 7:2638-48 Khare P, Mortimer S, Cleto C, Okamura K, Suzuki Y, Kusakabe T, Nakai K, Meedel T, Hastings K
A cis-regulatory signature in ascidians and flies, independent of transcription factor binding sites. Curr. Biol. 2010; 20; 9:792-802 Khoueiry P, Rothbächer U, Ohtsuka Y, Daian F, Frangulian E, Roure A, Dubchak I, Lemaire P
Role of the FGF and MEK signaling pathway in the ascidian embryo. Dev Growth Differ 2001; 43; 5:521-33 Kim G, Nishida H
Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos. Development 2003; 130; 21:5179-90 Kobayashi K, Sawada K, Yamamoto H, Wada S, Saiga H, Nishida H
Differential gene expression in notochord and nerve cord fate segregation in the Ciona intestinalis embryo. Genesis 2013; 51; 9:647-59 Kobayashi K, Yamada L, Satou Y, Satoh N
Spatial and temporal expression of two transcriptional isoforms of Lhx3, a LIM class homeobox gene, during embryogenesis of two phylogenetically remote ascidians, Halocynthia roretzi and Ciona intestinalis. Gene Expr. Patterns ; 10; 2-3:98-104 Kobayashi M, Takatori N, Nakajima Y, Kumano G, Nishida H, Saiga H
A conserved role for FGF signaling in chordate otic/atrial placode formation. Dev. Biol. 2007; 312; 1:245-57 Kourakis M, Smith W
Key steps in the morphogenesis of a cranial placode in an invertebrate chordate, the tunicate Ciona savignyi. Dev. Biol. 2010; 340; 1:134-44 Kourakis M, Newman-Smith E, Smith W
Transcriptional regulation of the retinoic acid receptor in the dorsal midline epidermis in the Ciona intestinalis embryo. Dev. Growth Differ. 2009; 51; 9:777-86 Koyano R, Ishida S, Fujiwara S
Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 2010; 137; 10:1613-23 Kubo A, Suzuki N, Yuan X, Nakai K, Satoh N, Imai K, Satou Y
Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis. Genesis 2008; 46; 11:697-710 Kugler J, Passamaneck Y, Feldman T, Beh J, Regnier T, Di Gregorio A
Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. J. Cell. Sci. 2010; 123; Pt 14:2453-63 Kugler J, Gazdoiu S, Oda-Ishii I, Passamaneck Y, Erives A, Di Gregorio A
Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade. Proc. Natl. Acad. Sci. U.S.A. 2006; 103; 43:15794-9 Kulman J, Harris J, Nakazawa N, Ogasawara M, Satake M, Davie E
Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev Biol 2006; 300; 2:770-84 Kumano G, Yamaguchi S, Nishida H
A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Curr. Biol. 2011; 21; 15:1308-13 Kumano G, Takatori N, Negishi T, Takada T, Nishida H
Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev Biol 2010; 344; 1:284-92 Kumano G, Kawai N, Nishida H
Transcription factor Tbx6 plays a central role in fate determination between mesenchyme and muscle in embryos of the ascidian, Halocynthia roretzi. Dev Growth Differ 2014; 56; 4:310-22 Kumano G, Negoro N, Nishida H
Patterning of an ascidian embryo along the anterior-posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Dev. Biol. 2009; 331; 1:78-88 Kumano G, Nishida H
Gene expression profiles in tadpole larvae of Ciona intestinalis. Dev. Biol. 2002; 242; 2:188-203 Kusakabe T, Yoshida R, Kawakami I, Kusakabe R, Mochizuki Y, Yamada L, Shin-i T, Kohara Y, Satoh N, Tsuda M, Satou Y
A conserved non-reproductive GnRH system in chordates. PLoS One 2012; 7; 7:e41955 Kusakabe T, Sakai T, Aoyama M, Kitajima Y, Miyamoto Y, Takigawa T, Daido Y, Fujiwara K, Terashima Y, Sugiuchi Y, Matassi G, Yagisawa H, Park M, Satake H, Tsuda M
Ci-opsin1, a vertebrate-type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. FEBS Lett. 2001; 506; 1:69-72 Kusakabe T, Kusakabe R, Kawakami I, Satou Y, Satoh N, Tsuda M
Computational discovery of DNA motifs associated with cell type-specific gene expression in Ciona. Dev. Biol. 2004; 276; 2:563-80 Kusakabe T, Yoshida R, Ikeda Y, Tsuda M
Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5. Development 2006; 133; 15:2835-44 Lamy C, Rothbächer U, Caillol D, Lemaire P
Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene. Development 1999; 126; 21:4737-48 Locascio A, Aniello F, Amoroso A, Manzanares M, Krumlauf R, Branno M
Novel Insights on Nitric Oxide Synthase and NO Signaling in Ascidian Metamorphosis. Int J Mol Sci 2022; 23; 7: Locascio A, Vassalli Q, Castellano I, Palumbo A
Developmental system drift in motor ganglion patterning between distantly related tunicates. Evodevo 2018; 9; :18 Lowe E, Stolfi A
Evolution of embryonic cis-regulatory landscapes between divergent Phallusia and Ciona ascidians. Dev. Biol. 2019; 448; 2:71-87 Madgwick A, Magri M, Dantec C, Gailly D, Fiuza U, Guignard L, Hettinger S, Gomez-Skarmeta J, Lemaire P
The retinoid X receptor in a marine invertebrate chordate: evolutionary insights from urochordates. Gen Comp Endocrinol 2012; 178; 2:380-90 Maeng S, Lee J, Choi S, Kim M, Shin Y, Sohn Y
Large-scale cDNA analysis of the maternal genetic information in the egg of Halocynthia roretzi for a gene expression catalog of ascidian development. Development 2001; 128; 13:2555-67 Makabe K, Kawashima T, Kawashima S, Minokawa T, Adachi A, Kawamura H, Ishikawa H, Yasuda R, Yamamoto H, Kondoh K, Arioka S, Sasakura Y, Kobayashi A, Yagi K, Shojima K, Kondoh Y, Kido S, Tsujinami M, Nishimura N, Takahashi M, Nakamura T, Kanehisa M, Ogasawara M, Nishikata T, Nishida H
Stomodeal and neurohypophysial placodes in Ciona intestinalis: insights into the origin of the pituitary gland. J. Exp. Zool. B Mol. Dev. Evol. 2005; 304; 4:324-39 Manni L, Agnoletto A, Zaniolo G, Burighel P
Neurogenic and non-neurogenic placodes in ascidians. J. Exp. Zool. B Mol. Dev. Evol. 2004; 302; 5:483-504 Manni L, Lane N, Joly J, Gasparini F, Tiozzo S, Caicci F, Zaniolo G, Burighel P
Common and divergent pathways in alternative developmental processes of ascidians. Bioessays 2006; 28; 9:902-12 Manni L, Burighel P
Ammonium channel expression is essential for brain development and function in the larva of Ciona intestinalis. J. Comp. Neurol. 2007; 503; 1:135-47 Marino R, Melillo D, Di Filippo M, Yamada A, Pinto M, De Santis R, Brown E, Matassi G
Transcriptome dynamics in early embryos of the ascidian, Ciona intestinalis. Dev Biol 2013; 384; 2:375-85 Matsuoka T, Ikeda T, Fujimaki K, Satou Y
Minos transposon causes germline transgenesis of the ascidian Ciona savignyi. Dev. Growth Differ. 2004; 46; 3:249-55 Matsuoka T, Awazu S, Satoh N, Sasakura Y
Pax gene expression in the developing central nervous system of Ciona intestinalis. Gene Expr. Patterns 2003; 3; 6:743-5 Mazet F, Hutt J, Millard J, Shimeld S
Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev. Biol. 2005; 282; 2:494-508 Mazet F, Hutt J, Milloz J, Millard J, Graham A, Shimeld S
Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF. Dev. Biol. 2007; 302; 1:333-44 Meedel T, Chang P, Yasuo H
Muscle development and lineage-specific expression of CiMDF, the MyoD-family gene of Ciona intestinalis. Dev. Biol. 2002; 241; 2:238-46 Meedel T, Lee J, Whittaker J
The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation. Development 1997; 124; 9:1711-21 Meedel T, Farmer S, Lee J
The larval ascidian nervous system: the chordate brain from its small beginnings. Trends Neurosci. 2001; 24; 7:401-10 Meinertzhagen I, Okamura Y
Bisphenol A affects neural development of the ascidian Ciona robusta. J Exp Zool A Ecol Integr Physiol 2019; 331; 1:5-16 Messinetti S, Mercurio S, Pennati R
Large-scale infection of the ascidian Ciona intestinalis by the gregarine Lankesteria ascidiae in an inland culture system. Dis. Aquat. Org. 2012; 101; 3:185-95 Mita K, Kawai N, Rueckert S, Sasakura Y
Nodal regulates neural tube formation in the Ciona intestinalis embryo. Dev. Genes Evol. 2007; 217; 8:593-601 Mita K, Fujiwara S
Identification of genes downstream of nodal in the Ciona intestinalis embryo. Zool. Sci. 2010; 27; 2:69-75 Mita K, Koyanagi R, Azumi K, Sabau S, Fujiwara S
Systematic analysis of embryonic expression profiles of zinc finger genes in Ciona intestinalis. Dev. Biol. 2006; 292; 2:546-54 Miwata K, Chiba T, Horii R, Yamada L, Kubo A, Miyamura D, Satoh N, Satou Y
Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS One 2018; 13; 4:e0196500 Miyaoku K, Nakamoto A, Nishida H, Kumano G
Brain induction in ascidian embryos is dependent on juxtaposition of FGF9/16/20-producing and -receiving cells. Dev Genes Evol 2007; 217; 3:177-88 Miyazaki Y, Nishida H, Kumano G
Large-scale characterization of genes specific to the larval nervous system in the ascidian Ciona intestinalis. Genesis 2003; 36; 1:62-71 Mochizuki Y, Satou Y, Satoh N
Regulatory gene expressions in the ascidian ventral sensory vesicle: evolutionary relationships with the vertebrate hypothalamus. Dev. Biol. 2005; 277; 2:567-79 Moret F, Christiaen L, Deyts C, Blin M, Vernier P, Joly J
The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle. Eur. J. Neurosci. 2005; 21; 11:3043-55 Moret F, Christiaen L, Deyts C, Blin M, Joly J, Vernier P
Expression of Raldh2, Cyp26 and Hox-1 in normal and retinoic acid-treated Ciona intestinalis embryos. Gene Expr. Patterns 2003; 3; 3:273-7 Nagatomo K, Fujiwara S
Retinoic acid affects gene expression and morphogenesis without upregulating the retinoic acid receptor in the ascidian Ciona intestinalis. Mech. Dev. 2003; 120; 3:363-72 Nagatomo K, Ishibashi T, Satou Y, Satoh N, Fujiwara S
Ascidian arrestin (Ci-arr), the origin of the visual and nonvisual arrestins of vertebrate. Eur. J. Biochem. 2002; 269; 21:5112-8 Nakagawa M, Orii H, Yoshida N, Jojima E, Horie T, Yoshida R, Haga T, Tsuda M
Chondroitin 6-O-sulfotransferases are required for morphogenesis of the notochord in the ascidian embryo. Dev. Dyn. 2014; 243; 12:1637-45 Nakamura J, Yoshida K, Sasakura Y, Fujiwara S
Chondroitin 4-O-sulfotransferases are required for cell adhesion and morphogenesis in the Ciona intestinalis embryo. Dev. Growth Differ. 2015; 57; 1:58-67 Nakamura J, Tetsukawa A, Fujiwara S
Three-dimensional anatomy of the Ciona intestinalis tailbud embryo at single-cell resolution. Dev. Biol. 2012; 372; 2:274-84 Nakamura M, Terai J, Okubo R, Hotta K, Oka K
POPK-1/Sad-1 kinase is required for the proper translocation of maternal mRNAs and putative germ plasm at the posterior pole of the ascidian embryo. Development 2005; 132; 21:4731-42 Nakamura Y, Makabe K, Nishida H
The evolutionary origin of animal cellulose synthase. Dev. Genes Evol. 2004; 214; 2:81-8 Nakashima K, Yamada L, Satou Y, Azuma J, Satoh N
A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis. Mar Genomics 2008; 1; 1:9-14 Nakashima K, Sugiyama J, Satoh N
Origin of the vertebrate visual cycle: genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate. J. Comp. Neurol. 2003; 460; 2:180-90 Nakashima Y, Kusakabe T, Kusakabe R, Terakita A, Shichida Y, Tsuda M
Tissue-specific profile of DNA replication in the swimming larvae of Ciona intestinalis. Zool. Sci. 2005; 22; 3:301-9 Nakayama A, Satoh N, Sasakura Y
Ordered expression pattern of Hox and ParaHox genes along the alimentary canal in the ascidian juvenile. Cell Tissue Res. 2016; 365; 1:65-75 Nakayama S, Satou K, Orito W, Ogasawara M
Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev. Biol. 2009; 326; 2:357-67 Nakayama-Ishimura A, Chambon J, Horie T, Satoh N, Sasakura Y
Formation of the digestive tract in Ciona intestinalis includes two distinct morphogenic processes between its anterior and posterior parts. Dev. Dyn. 2013; 242; 10:1172-83 Nakazawa K, Yamazawa T, Moriyama Y, Ogura Y, Kawai N, Sasakura Y, Saiga H
Nodal and FGF coordinate ascidian neural tube morphogenesis. Development 2016; 143; 24:4665-4675 Navarrete I, Levine M
Localized PEM mRNA and protein are involved in cleavage-plane orientation and unequal cell divisions in ascidians. Curr Biol 2007; 17; 12:1014-25 Negishi T, Takada T, Kawai N, Nishida H
Reciprocal and dynamic polarization of planar cell polarity core components and myosin. Elife 2015; 4; :e05361 Newman-Smith E, Kourakis M, Reeves W, Veeman M, Smith W
Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.). J. Comp. Neurol. 1991; 309; 4:415-29 Nicol D, Meinertzhagen I
Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. Dev. Biol. 1985; 110; 2:440-54 Nishida H, Satoh N
Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 1987; 121; 2:526-41 Nishida H
Cell fate specification by localized cytoplasmic determinants and cell interactions in ascidian embryos. Int. Rev. Cytol. 1997; 176; :245-306 Nishida H
Determination and regulation in the pigment cell lineage of the ascidian embryo. Dev. Biol. 1989; 132; 2:355-67 Nishida H, Satoh N
Profiles of maternally expressed genes in fertilized eggs of Ciona intestinalis. Dev. Biol. 2001; 238; 2:315-31 Nishikata T, Yamada L, Mochizuki Y, Satou Y, Shin-i T, Kohara Y, Satoh N
Specification of notochord cells in the ascidian embryo analysed with a specific monoclonal antibody. Cell Differ. Dev. 1990; 30; 1:43-53 Nishikata T, Satoh N
Cell lineage and cis-regulation for a unique GABAergic/glycinergic neuron type in the larval nerve cord of the ascidian Ciona intestinalis. Dev. Growth Differ. 2012; 54; 2:177-86 Nishitsuji K, Horie T, Ichinose A, Sasakura Y, Yasuo H, Kusakabe T
A comprehensive survey of cadherin superfamily gene expression patterns in Ciona intestinalis. Gene Expr. Patterns 2008; 8; 5:349-56 Noda T, Satoh N
A Maternal System Initiating the Zygotic Developmental Program through Combinatorial Repression in the Ascidian Embryo. PLoS Genet. 2016; 12; 5:e1006045 Oda-Ishii I, Kubo A, Kari W, Suzuki N, Rothbächer U, Satou Y
Lineage-independent mosaic expression and regulation of the Ciona multidom gene in the ancestral notochord. Dev. Dyn. 2007; 236; 7:1806-19 Oda-Ishii and Di Gregorio
Isolation and characterization of endostyle-specific genes in the ascidian Ciona intestinalis. Biol. Bull. 1998; 195; 1:60-9 Ogasawara M, Satoh N
Identification of thirty-four transcripts expressed specifically in hemocytes of Ciona intestinalis and their expression profiles throughout the life cycle. DNA Res. 2006; 13; 1:25-35 Ogasawara M, Nakazawa N, Azumi K, Yamabe E, Satoh N, Satake M
Gene expression profiles in young adult Ciona intestinalis. Dev. Genes Evol. 2002; 212; 4:173-85 Ogasawara M, Sasaki A, Metoki H, Shin-i T, Kohara Y, Satoh N, Satou Y
Developmental Control of Cell-Cycle Compensation Provides a Switch for Patterned Mitosis at the Onset of Chordate Neurulation. Dev. Cell 2016; 37; 2:148-61 Ogura Y, Sasakura Y
Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 2011; 138; 3:577-87 Ogura Y, Sakaue-Sawano A, Nakagawa M, Satoh N, Miyawaki A, Sasakura Y
Transposon-mediated enhancer detection reveals the location, morphology and development of the cupular organs, which are putative hydrodynamic sensors, in the ascidian Ciona intestinalis. Zool. Sci. 2010; 27; 11:842-50 Ohta N, Horie T, Satoh N, Sasakura Y
A Boolean Function for Neural Induction Reveals a Critical Role of Direct Intercellular Interactions in Patterning the Ectoderm of the Ascidian Embryo. PLoS Comput. Biol. 2015; 11; 12:e1004687 Ohta N, Waki K, Mochizuki A, Satou Y
Multiple signaling pathways coordinate to induce a threshold response in a chordate embryo. PLoS Genet. 2013; 9; 10:e1003818 Ohta N, Satou Y
Nodal signaling regulates specification of ascidian peripheral neurons through control of the BMP signal. Development 2014; 141; 20:3889-99 Ohtsuka Y, Matsumoto J, Katsuyama Y, Okamura Y
Establishment of lateral organ asymmetries in the invertebrate chordate, . Evodevo 2017; 8; :12 Palmquist K, Davidson B
Enhanced expression of a cloned and sequenced Ciona intestinalis TNFalpha-like (CiTNF alpha) gene during the LPS-induced inflammatory response. Cell Tissue Res. 2008; 334; 2:305-17 Parrinello N, Vizzini A, Arizza V, Salerno G, Parrinello D, Cammarata M, Giaramita F, Vazzana M
Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLoS ONE 2012; 7; 9:e46193 Pasini A, Manenti R, Rothbächer U, Lemaire P
Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol. 2006; 4; 7:e225 Pasini A, Amiel A, Rothbächer U, Roure A, Lemaire P, Darras S
Dynamic and polarized muscle cell behaviors accompany tail morphogenesis in the ascidian Ciona intestinalis. PLoS ONE 2007; 2; 8:e714 Passamaneck Y, Hadjantonakis A, Di Gregorio A
Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian Ciona intestinalis. Development 2009; 136; 21:3679-89 Passamaneck Y, Katikala L, Perrone L, Dunn M, Oda-Ishii I, Di Gregorio A
The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev. Biol. 2014; 389; 1:82-97 Patthey C, Schlosser G, Shimeld S
Developmental expression of tryptophan hydroxylase gene in Ciona intestinalis. Dev. Genes Evol. 2007; 217; 4:307-13 Pennati R, Candiani S, Biggiogero M, Zega G, Groppelli S, Oliveri D, Parodi M, De Bernardi F, Pestarino M
Auto and cross regulatory elements control Onecut expression in the ascidian nervous system. Dev. Biol. 2014; 390; 2:273-87 Pezzotti M, Locascio A, Racioppi C, Fucci L, Branno M
Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 2007; 134; 8:1491-7 Picco V, Hudson C, Yasuo H
Isolation and characterization of the cDNA for a Ciona intestinalis RNA binding protein: spatial and temporal expression during development. Differentiation 2000; 66; 1:23-30 Piscopo A, Branno M, Aniello F, Corrado M, Piscopo M, Fucci L
Loss of collagen gene expression in the notochord of the tailless tunicate Molgula occulta. Integr Comp Biol 2023; ; : Popsuj S, Di Gregorio A, Swalla B, Stolfi A
Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 2010; 137; 12:2011-21 Prodon F, Chenevert J, Hébras C, Dumollard R, Faure E, Gonzalez-Garcia J, Nishida H, Sardet C, McDougall A
Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis. Nat Commun 2014; 5; :4830 Racioppi C, Kamal A, Razy-Krajka F, Gambardella G, Zanetti L, di Bernardo D, Sanges R, Christiaen L, Ristoratore F
A single GATA factor plays discrete, lineage specific roles in ascidian heart development. Dev. Biol. 2011; 352; 1:154-63 Ragkousi K, Beh J, Sweeney S, Starobinska E, Davidson B
An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time. Elife 2018; 7; : Razy-Krajka F, Gravez B, Kaplan N, Racioppi C, Wang W, Christiaen L
Anterior-posterior regionalized gene expression in the Ciona notochord. Dev. Dyn. 2014; 243; 4:612-620 Reeves W, Thayer R, Veeman M
Functional and evolutionary insights from the notochord transcriptome. Development 2017; 144; 18:3375-3387 Reeves W, Wu Y, Harder M, Veeman M
Developmental signature, synaptic connectivity and neurotransmission are conserved between vertebrate hair cells and tunicate coronal cells. J Comp Neurol 2018; 526; 6:957-971 Rigon F, Gasparini F, Shimeld S, Candiani S, Manni L
Expression and functional analysis of Cititf1, an ascidian NK-2 class gene, suggest its role in endoderm development. Development 1999; 126; 22:5149-59 Ristoratore F, Spagnuolo A, Aniello F, Branno M, Fabbrini F, Di Lauro R
A combinatorial code of maternal GATA, Ets and beta-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 2007; 134; 22:4023-32 Rothbächer U, Bertrand V, Lamy C, Lemaire P
Msxb is a core component of the genetic circuitry specifying the dorsal and ventral neurogenic midlines in the ascidian embryo. Dev. Biol. 2016; 409; 1:277-287 Roure A, Darras S
An otx/nodal regulatory signature for posterior neural development in ascidians. PLoS Genet. 2014; 10; 8:e1004548 Roure A, Lemaire P, Darras S
Regulatory elements controlling Ci-msxb tissue-specific expression during Ciona intestinalis embryonic development. Dev. Biol. 2004; 267; 2:517-28 Russo M, Donizetti A, Locascio A, D'Aniello S, Amoroso A, Aniello F, Fucci L, Branno M
Expression of a single prominin homolog in the embryo of the model chordate Ciona intestinalis. Gene Expr. Patterns 2014; 15; 1:38-45 Russo M, Racioppi C, Zanetti L, Ristoratore F
The CNS connectome of a tadpole larva of (L.) highlights sidedness in the brain of a chordate sibling. Elife 2016; 5; : Ryan K, Lu Z, Meinertzhagen I
Self-incompatibility response induced by calcium increase in sperm of the ascidian Ciona intestinalis. Proc. Natl. Acad. Sci. U.S.A. 2012; 109; 11:4158-62 Saito T, Shiba K, Inaba K, Yamada L, Sawada H
CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev. Growth Differ. 2014; 56; 7:499-510 Sasaki H, Yoshida K, Hozumi A, Sasakura Y
Transcriptional regulation of a horizontally transferred gene from bacterium to chordate. Proc. Biol. Sci. 2016; 283; 1845: Sasakura Y, Ogura Y, Treen N, Yokomori R, Park S, Nakai K, Saiga H, Sakuma T, Yamamoto T, Fujiwara S, Yoshida K
A genomewide survey of developmentally relevant genes in Ciona intestinalis. VII. Molecules involved in the regulation of cell polarity and actin dynamics. Dev. Genes Evol. 2003; 213; 5-6:273-83 Sasakura Y, Yamada L, Takatori N, Satou Y, Satoh N
Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc. Natl. Acad. Sci. U.S.A. 2005; 102; 42:15134-9 Sasakura Y, Nakashima K, Awazu S, Matsuoka T, Nakayama A, Azuma J, Satoh N
Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 2012; 139; 12:2156-60 Sasakura Y, Kanda M, Ikeda T, Horie T, Kawai N, Ogura Y, Yoshida R, Hozumi A, Satoh N, Fujiwara S
Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol. Genet. Genomics 2010; 283; 1:99-110 Sasakura Y, Suzuki M, Hozumi A, Inaba K, Satoh N
Enhancer detection in the ascidian Ciona intestinalis with transposase-expressing lines of Minos. Dev. Dyn. 2008; 237; 1:39-50 Sasakura Y, Konno A, Mizuno K, Satoh N, Inaba K
HrWnt-5: a maternally expressed ascidian Wnt gene with posterior localization in early embryos. Int. J. Dev. Biol. 1998; 42; 4:573-9 Sasakura Y, Ogasawara M, Makabe K
Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc. Natl. Acad. Sci. U.S.A. 2003; 100; 13:7726-30 Sasakura Y, Awazu S, Chiba S, Satoh N
Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryos as a tool for insertional mutagenesis. Gene 2003; 308; :11-20 Sasakura Y, Awazu S, Chiba S, Kano S, Satoh N
Formation of adult organs through metamorphosis in ascidians. Wiley Interdiscip Rev Dev Biol 2018; 7; 2: Sasakura Y, Hozumi A
Structure and developmental expression of the ascidian TRP gene: insights into the evolution of pigment cell-specific gene expression. Dev. Dyn. 1999; 215; 3:225-37 Sato S, Toyoda R, Katsuyama Y, Saiga H, Numakunai T, Ikeo K, Gojobori T, Yajima I, Yamamoto H
Action of morpholinos in Ciona embryos. Genesis 2001; 30; 3:103-6 Satou Y, Imai K, Satoh N
Ciona intestinalis cDNA projects: expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene 2002; 287; 1-2:83-96 Satou Y, Takatori N, Fujiwara S, Nishikata T, Saiga H, Kusakabe T, Shin-i T, Kohara Y, Satoh N
macho-1-Related genes in Ciona embryos. Dev. Genes Evol. 2002; 212; 2:87-92 Satou Y, Yagi K, Imai K, Yamada L, Nishida H, Satoh N
Gene expression profiles in Ciona intestinalis tailbud embryos. Development 2001; 128; 15:2893-904 Satou Y, Takatori N, Yamada L, Mochizuki Y, Hamaguchi M, Ishikawa H, Chiba S, Imai K, Kano S, Murakami S, Nakayama A, Nishino A, Sasakura Y, Satoh G, Shimotori T, Shin-I T, Shoguchi E, Suzuki M, Takada N, Utsumi N, Yoshida N, Saiga H, Kohara Y, Satoh N
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev. Biol. 2014; 389; 1:98-119 Schlosser G, Patthey C, Shimeld S
Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. Evodevo 2016; 7; 1:21 Segade F, Cota C, Famiglietti A, Cha A, Davidson B
FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development 2009; 136; 1:23-8 Shi W, Peyrot S, Munro E, Levine M
Ephrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the Ciona embryo. Development 2008; 135; 5:931-40 Shi W, Levine M
Upstream regulatory sequences required for specific gene expression in the ascidian neural tube. Zool. Sci. 2010; 27; 2:76-83 Shimai K, Kitaura Y, Tamari Y, Nishikata T
Gene expression profiles in Ciona intestinalis stigmatal cells: insight into formation of the ascidian branchial fissures. Dev. Dyn. 2006; 235; 2:562-9 Shimazaki A, Sakai A, Ogasawara M
Urochordate betagamma-crystallin and the evolutionary origin of the vertebrate eye lens. Curr. Biol. 2005; 15; 18:1684-9 Shimeld S, Purkiss A, Dirks R, Bateman O, Slingsby C, Lubsen N
Differential regional expression of genes in the developing brain of Ciona intestinalis embryos. Zool. Sci. 2010; 27; 2:103-9 Shimozono N, Ohta N, Satoh N, Hamada M
Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 2011; 138; 14:2871-81 Shirae-Kurabayashi M, Matsuda K, Nakamura A
Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 2006; 133; 14:2683-93 Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka K, Nakamoto C, Nakamura A
DBTGR: a database of tunicate promoters and their regulatory elements. Nucleic Acids Res. 2006; 34; Database issue:D552-5 Sierro N, Kusakabe T, Park K, Yamashita R, Kinoshita K, Nakai K
Natural variation of model mutant phenotypes in Ciona intestinalis. PLoS ONE 2008; 3; 6:e2344 Sordino P, Andreakis N, Brown E, Leccia N, Squarzoni P, Tarallo R, Alfano C, Caputi L, D'Ambrosio P, Daniele P, D'Aniello E, D'Aniello S, Maiella S, Miraglia V, Russo M, Sorrenti G, Branno M, Cariello L, Cirino P, Locascio A, Spagnuolo A, Zanetti L, Ristoratore F
FGF/MAPK/Ets signaling renders pigment cell precursors competent to respond to Wnt signal by directly controlling Ci-Tcf transcription. Development 2011; 138; 7:1421-32 Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A
Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 2012; 192; 1:55-66 Stolfi A, Christiaen L
Early chordate origins of the vertebrate second heart field. Science 2010; 329; 5991:565-8 Stolfi A, Gainous T, Young J, Mori A, Levine M, Christiaen L
Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 2014; 141; 21:4115-20 Stolfi A, Gandhi S, Salek F, Christiaen L
Neuronal subtype specification in the spinal cord of a protovertebrate. Development 2011; 138; 5:995-1004 Stolfi A, Levine M
Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. Elife 2014; 3; :e03728 Stolfi A, Lowe E, Racioppi C, Ristoratore F, Brown C, Swalla B, Christiaen L
Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 2015; 527; 7578:371-4 Stolfi A, Ryan K, Meinertzhagen I, Christiaen L
Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis 2015; 53; 1:1-14 Stolfi A, Sasakura Y, Chalopin D, Satou Y, Christiaen L, Dantec C, Endo T, Naville M, Nishida H, Swalla B, Volff J, Voskoboynik A, Dauga D, Lemaire P
Neural tube patterning by Ephrin, FGF and Notch signaling relays. Development 2011; 138; 24:5429-39 Stolfi A, Wagner E, Taliaferro J, Chou S, Levine M
An ascidian RING finger gene is specifically expressed in a single cell of larval ocellus. Gene 2003; 312; :111-6 Sun X, Okuyama M, Miyazaki K, Zhang S, Wada H
The cell death machinery controlled by Bax and Bcl-XL is evolutionarily conserved in Ciona intestinalis. Apoptosis 2005; 10; 6:1211-20 Takada N, Yamaguchi H, Shida K, Terajima D, Satou Y, Kasuya A, Satoh N, Satake M, Wang H
Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos. Zool. Sci. 2010; 27; 2:110-8 Takahashi H, Hotta K, Takagi C, Ueno N, Satoh N, Shoguchi E
Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development. Development 2004; 131; 14:3285-94 Takahashi T, Holland P
Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev. 1999; 13; 12:1519-23 Takahashi H, Hotta K, Erives A, Di Gregorio A, Zeller R, Levine M, Satoh N
The evolutionary origins of vertebrate midbrain and MHB: insights from mouse, amphioxus and ascidian Dmbx homeobox genes. Brain Res. Bull. 2005; 66; 4-6:510-7 Takahashi T
Developmental expression of ascidian neurotransmitter synthesis genes. I. Choline acetyltransferase and acetylcholine transporter genes. Dev. Genes Evol. 2002; 212; 1:50-3 Takamura K, Egawa T, Ohnishi S, Okada T, Fukuoka T
Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev. Genes Evol. 2002; 212; 1:11-8 Takamura K, Fujimura M, Yamaguchi Y
Nervous network in larvae of the ascidian Ciona intestinalis. Dev. Genes Evol. 1998; 208; 1:1-8 Takamura K
Neural map of the larval central nervous system in the ascidian Ciona intestinalis. Zool. Sci. 2010; 27; 2:191-203 Takamura K, Minamida N, Okabe S
Expression of hedgehog genes in Ciona intestinalis embryos. Mech. Dev. 2002; 116; 1-2:235-8 Takatori N, Satou Y, Satoh N
T-box genes in the ascidian Ciona intestinalis: characterization of cDNAs and spatial expression. Dev. Dyn. 2004; 230; 4:743-53 Takatori N, Hotta K, Mochizuki Y, Satoh G, Mitani Y, Satoh N, Satou Y, Takahashi H
The transcript coding for an RNA-binding protein is localized in the anterior side of the ascidian 2-cell stage embryo. Dev. Genes Evol. 2000; 210; 8-9:464-6 Tanaka K, Kawamura H, Nishikata T
Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi. Dev. Growth Differ. 2004; 46; 2:163-80 Taniguchi K, Nishida H
Network structure of projections extending from peripheral neurons in the tunic of ascidian larva. Dev. Dyn. 2010; 239; 8:2278-87 Terakubo H, Nakajima Y, Sasakura Y, Horie T, Konno A, Takahashi H, Inaba K, Hotta K, Oka K
A lasp family protein of Ciona intestinalis. Biochim. Biophys. Acta 2008; 1779; 1:51-9 Terasaki A, Hiruta J, Suzuki J, Sakamoto S, Nishioka T, Suzuki H, Ohashi K, Azumi K, Ogasawara M
Identification of chondroitin/dermatan sulfotransferases in the protochordate, Ciona intestinalis. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 2010; 157; 2:205-12 Tetsukawa A, Nakamura J, Fujiwara S
Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2015; 53; 1:82-104 Thompson J, Di Gregorio A
Differential gene expression along the animal-vegetal axis in the ascidian embryo is maintained by a dual functional protein Foxd. PLoS Genet. 2017; 13; 5:e1006741 Tokuhiro S, Tokuoka M, Kobayashi K, Kubo A, Oda-Ishii I, Satou Y
Three distinct lineages of mesenchymal cells in Ciona intestinalis embryos demonstrated by specific gene expression. Dev. Biol. 2004; 274; 1:211-24 Tokuoka M, Imai K, Satou Y, Satoh N
Distinct regulation of in two muscle lineages of the ascidian embryo achieves temporal coordination of muscle development. Development 2018; 145; 11: Tokuoka M, Kobayashi K, Satou Y
Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 2014; 141; 2:481-7 Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y
Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo. Curr. Biol. 2018; 28; 7:1150-1156.e4 Treen N, Heist T, Wang W, Levine M
The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol Evol 2012; 4; 8:740-9 Tsagkogeorga G, Cahais V, Galtier N
Analysis of ascidian Not genes highlights their evolutionarily conserved and derived features of structure and expression in development. Dev. Genes Evol. 2004; 214; 9:460-5 Utsumi N, Shimojima Y, Saiga H
Onecut regulates core components of the molecular machinery for neurotransmission in photoreceptor differentiation. Front Cell Dev Biol 2021 Mar 18; eCollection 2021; 9:602450 Vassalli Q, Colantuono C, Nittoli V, Ferraioli A, Fasano G, Berruto F, Chiusano M, Kelsh R, Sordino P, Locascio A
The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution. Dev. Biol. 2010; 344; 1:138-49 Veeman M, Newman-Smith E, El-Nachef D, Smith W
Isolation of a novel LPS-induced component of the ML superfamily in Ciona intestinalis. Dev. Comp. Immunol. 2015; 53; 1:70-8 Vizzini A, Bonura A, Longo V, Sanfratello M, Parrinello D, Cammarata M, Colombo P
Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis. Dev. Comp. Immunol. 2016; 55; :102-10 Vizzini A, Di Falco F, Parrinello D, Sanfratello M, Cammarata M
Origin and genetic evolution of the vertebrate skeleton. Zool. Sci. 2010; 27; 2:119-23 Wada H
Roles of Hroth, the ascidian otx gene, in the differentiation of the brain (sensory vesicle) and anterior trunk epidermis in the larval development of Halocynthia roretzi. Mech Dev 2004; 121; 5:463-74 Wada S, Sudou N, Saiga H
Ascidian otx gene Hroth activates transcription of the brain-specific gene HrTRP. Dev Dyn 2002; 225; 1:46-53 Wada S, Toyoda R, Yamamoto H, Saiga H
Novel genes involved in canonical Wnt/beta-catenin signaling pathway in early Ciona intestinalis embryos. Dev. Growth Differ. 2008; 50; 4:215-27 Wada S, Hamada M, Kobayashi K, Satoh N
FGF signaling establishes the anterior border of the Ciona neural tube. Development 2012; 139; 13:2351-9 Wagner E, Levine M
Islet is a key determinant of ascidian palp morphogenesis. Development 2014; 141; 15:3084-92 Wagner E, Stolfi A, Gi Choi Y, Levine M
Genetic pathways for differentiation of the peripheral nervous system in ascidians. Nat Commun 2015; 6; :8719 Waki K, Imai K, Satou Y
NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 2013; 11; 12:e1001725 Wang W, Razy-Krajka F, Siu E, Ketcham A, Christiaen L
Architectural delineation and molecular identification of extracellular matrix in ascidian embryos and larvae. Biol Open 2017; 6; 9:1383-1390 Wei J, Wang G, Li X, Ren P, Yu H, Dong B
An analysis of melanogenesis in differentiating pigment cells of ascidian embryos. Dev. Biol. 1966; 14; 1:1-39 Whittaker J
Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 2012; 368; 1:127-39 Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B
Isolation of an early neural maker gene abundantly expressed in the nervous system of the ascidian, Halocynthia roretzi. Dev. Genes Evol. 2001; 211; 1:49-53 Yagi K, Makabe K
A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Development 2004; 131; 6:1279-88 Yagi K, Satou Y, Satoh N
Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Dev. Biol. 2005; 282; 2:535-49 Yagi K, Takatori N, Satou Y, Satoh N
Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1. Dev. Biol. 2004; 274; 2:478-89 Yagi K, Satoh N, Satou Y
Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos. Dev. Biol. 2009; 328; 1:1-12 Yamada S, Hotta K, Yamamoto T, Ueno N, Satoh N, Takahashi H
Microarray analysis of localization of maternal transcripts in eggs and early embryos of the ascidian, Ciona intestinalis. Dev. Biol. 2005; 284; 2:536-50 Yamada L, Kobayashi K, Satou Y, Satoh N
Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi. Dev. Biol. 2006; 296; 2:524-36 Yamada L
Morpholino-based gene knockdown screen of novel genes with developmental function in Ciona intestinalis. Development 2003; 130; 26:6485-95 Yamada L, Shoguchi E, Wada S, Kobayashi K, Mochizuki Y, Satou Y, Satoh N
FGF8/17/18 functions together with FGF9/16/20 during formation of the notochord in Ciona embryos. Dev. Biol. 2007; 302; 1:92-103 Yasuo H, Hudson C
Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis. Genome Res. 2016; 26; 1:140-50 Yokomori R, Shimai K, Nishitsuji K, Suzuki Y, Kusakabe T, Nakai K
Comprehensive morphological analysis of individual peripheral neuron dendritic arbors in ascidian larvae using the photoconvertible protein Kaede. Dev. Dyn. 2014; 243; 10:1362-73 Yokoyama T, Hotta K, Oka K
Central nervous system-specific expression of G protein alpha subunits in the ascidian Ciona intestinalis. Zool. Sci. 2002; 19; 10:1079-88 Yoshida R, Kusakabe T, Kamatani M, Daitoh M, Tsuda M
Left-right asymmetric expression of Pitx is regulated by the asymmetric Nodal signaling through an intronic enhancer in Ciona intestinalis. Dev. Genes Evol. 2008; 218; 7:353-60 Yoshida K, Saiga H
Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells. Dev. Biol. 2017; 423; 2:111-125 Yoshida K, Hozumi A, Treen N, Sakuma T, Yamamoto T, Shirae-Kurabayashi M, Sasakura Y
Hox-mediated endodermal identity patterns pharyngeal muscle formation in the chordate pharynx. Development 2017; 144; 9:1629-1634 Yoshida K, Nakahata A, Treen N, Sakuma T, Yamamoto T, Sasakura Y
Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis. Dev. Biol. 2011; 354; 1:144-50 Yoshida K, Saiga H
Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases. Genesis 2014; 52; 5:431-9 Yoshida K, Treen N, Hozumi A, Sakuma T, Yamamoto T, Sasakura Y
Establishment of enhancer detection lines expressing GFP in the gut of the ascidian Ciona intestinalis. Zool. Sci. 2012; 29; 1:11-20 Yoshida R, Sasakura Y
Transcription regulatory mechanism of Pitx in the papilla-forming region in the ascidian, Halocynthia roretzi, implies conserved involvement of Otx as the upstream gene in the adhesive organ development of chordates. Dev Growth Differ 2012; 54; 6:649-59 Yoshida K, Ueno M, Niwano T, Saiga H
TALEN-Based Knockout System. Adv. Exp. Med. Biol. 2018; 1029; :131-139 Yoshida K, Treen N
Comparative genomics identifies a cis-regulatory module that activates transcription in specific subsets of neurons in Ciona intestinalis larvae. Dev. Growth Differ. 2007; 49; 8:657-67 Yoshida R, Horie T, Tsuda M, Kusakabe T
Identification of neuron-specific promoters in Ciona intestinalis. Genesis 2004; 39; 2:130-40 Yoshida R, Sakurai D, Horie T, Kawakami I, Tsuda M, Kusakabe T
Developmental expression of glutamic acid decarboxylase and of gamma-aminobutyric acid type B receptors in the ascidian Ciona intestinalis. J. Comp. Neurol. 2008; 506; 3:489-505 Zega G, Biggiogero M, Groppelli S, Candiani S, Oliveri D, Parodi M, Pestarino M, De Bernardi F, Pennati R
Comparison of differentiation gene batteries for migratory mechanosensory neurons across bilaterians. Evol Dev 2020; ; : Zhao D, Chen S, Horie T, Gao Y, Bao H, Liu X
H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Dev Biol 2020; 460; 2:200-214 Zheng T, Nakamoto A, Kumano G